Development of a rubella virus vaccine expression vector: use of a picornavirus internal ribosome entry site increases stability of expression.
نویسندگان
چکیده
Rubella virus (RUB) is a small plus-strand RNA virus classified in the Rubivirus genus of the family Togaviridae. Live, attenuated RUB vaccines have been successfully used in vaccination programs for over 25 years, making RUB an attractive vaccine vector. In this study, such a vector was constructed using a recently developed RUB infectious cDNA clone (Robo). Using a standard strategy employed to produce expression and vaccine vectors with other togaviruses, the subgenomic promoter was duplicated to produce a recombinant construct (termed dsRobo) that expressed reporter genes such as chloramphenicol acetyltransferase and green fluorescent protein (GFP) under control of the second subgenomic promoter. However, expression of the reporter genes, as exemplified by GFP expression by dsRobo/GFP virus, was unstable during passaging, apparently due to homologous recombination between the subgenomic promoters leading to deletion of the GFP gene. To improve the stability of the vector, the internal ribosome entry site (IRES) of a picornavirus, encephalomyocarditis virus, was used instead of the second subgenomic promoter to eliminate homology. Construction was initiated by first replacing the subgenomic promoter in the parent Robo infectious clone with the IRES. Surprisingly, viable virus resulted; this virus did not synthesize a subgenomic RNA. The subgenomic promoter was then reintroduced in an orientation such that a single subgenomic RNA was produced, GFP was the initial gene on this RNA, while the RUB structural protein open reading frame was downstream and under control of the IRES element. GFP expression by this vector was significantly improved in comparison to dsRobo/GFP. This strategy should be applicable to increase the stability of other togavirus vectors.
منابع مشابه
Construction of a Minigenome Rescue System for Measles Virus, AIK-c Strain
Background:In the recent decade, the reverse genetics method has been broadly used for rescue of negative-stranded RNA viruses from cDNA or viral minigenomes. This technique has been applied to study different steps in virus replication and virus-host interactions. Reverse genetics could also be implemented for design of new vaccines. The T7 RNA polymerase activity as well as virus (nucleocapsi...
متن کاملConstruction of a Mammalian IRES-based Expression Vector to Amplify a Bispecific Antibody; Blinatumomab
Blinatumomab, the bispecific T cell engager, has been demonstrated as the most successful BsAb to date. Throughout the past decade, vector design has great importance for the expression of monoclonal antibody in Chinese hamster ovary (CHO) cells. It has been indicated that expression plasmids based on the elongation factor-1 alpha (EF-1 alpha) gene and DHFR selection marker can be highly effect...
متن کاملConstruction of a Mammalian IRES-based Expression Vector to Amplify a Bispecific Antibody; Blinatumomab
Blinatumomab, the bispecific T cell engager, has been demonstrated as the most successful BsAb to date. Throughout the past decade, vector design has great importance for the expression of monoclonal antibody in Chinese hamster ovary (CHO) cells. It has been indicated that expression plasmids based on the elongation factor-1 alpha (EF-1 alpha) gene and DHFR selection marker can be highly effect...
متن کاملExpression of an epitope-based recombinant vaccine against Foot and Mouth Disease (FMDV) in tobacco plant (Nicotiana tabacum)
Regarding high potential of green plants for development of recombinant vaccines, this research was conducted to evaluate expression of a novel recombinant vaccines against Foot and Mouth Disease (FMDV) in tobacco plant. For this purpose, a synthetic gene encoding 129-169 amino acids of foot and mouth disease virus capsid protein VP1 was transferred to tobacco plant via Agrobacterium-mediated g...
متن کاملDesigning and Development of a DNA Vaccine Based On Structural Proteins of Hepatitis C Virus
Background: Hepatitis C virus (HCV) infection is one of the most prevalent infectious diseases responsible for high morbidity and mortality worldwide. Therefore, designing new and effective therapeutics is of great importance. The aim of the current study was to construct a DNA vaccine containing structural proteins of HCV and evaluation of its expression in a eukaryot...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of virology
دوره 74 22 شماره
صفحات -
تاریخ انتشار 2000